
Rapid Software Evolution
From Construction to Computation and Back

Borislav Iordanov
Kobrix Software, Inc.
biordanov@acm.org

Abstract
Software has quantifiably reached levels of complexity be-
yond human understanding. The divide and conquer prin-
ciple breaks for large-scale systems for clearly identifiable
reasons. To overcome those barriers, the process of software
construction should be modeled after the process of evolu-
tion in the living world. We propose a concrete, practical
platform for evolving software programs through natural se-
lection and continuous human participation. The presenta-
tion is informally structured as a dialog.

Categories and Subject Descriptors D.2.m [Software En-
gineering]: Miscellaneous

General Terms Design, Theory

Keywords evolutionary engineering, software construc-
tion, complexity, distributed computing, knowledge man-
agement, live-system, hypergraph

1. Prolog
Chewbacca is a young, hairy, tireless and clever dog. Jose-
fina is a thoughtful, conservative, aristocratic lady dog.
While not in the field themselves, motivated by the noble
desire to participate and understand their masters’ livehood,
they like to discuss ideas about software engineering while
said masters are not around.

The following dialog begins with a systems theory per-
spective on software complexity and an argument for the
theoretical and practical limitations of traditional divide and
conquer approaches such as modularity and abstraction. A
biological evolutionary process for the creation of software
is argued for and a conceptual framework for software con-
struction inspired from the idea of evolutionary engineering
([4], [5], [9]) is proposed. Finally, an ongoing implementa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’07 October 21-25, 2007, Montreal, Quebec, Canada
Copyright c© 2007 ACM [to be supplied]. . . $5.00

tion of a platform based on this framework is presented. The
platform is founded on a distributed memory model struc-
tured as a generalized hypergraph, offering facilities for pro-
gramming language interoperation and management of rich
semantic information.

2. A Chat About Complexity
It is early in the morning. The masters have left the house
rushing to work as usual. Chewbacca kindly escorted them
to the door and went back to wake up Josefina in an unusu-
ally excited mood.

C: Good morning, Dear! Wake up! We have an exciting
day ahead of us and that melancholic look on your face could
almost have me believe that I’m alone in my enthusiasm.

J: It’s a deep look, not a melancholic one. I know better,
for it is I who produce it.

C: Sure, sure. . . anyway, remember last night I told you
about this idea of rapid software evolution? If you still had a
few active neurons, you’d recall that I conjectured that peo-
ple could, and indeed should, be creating software programs
by evolving them, rather than by designing them ab initio,
ad infinitum.

J: Oh, my! A good night’s sleep didn’t help it, hm? I
guess that explains all the giggling and jumping around.
So let me see. You want to make a program that evolves
by itself, yet towards some sort of purposefulness. A rather
strange proposition, I must confess. And I’m curious what
drove you to that idea.

C: Well, people are creating those things called computer
programs, that they very much like to conceive of as inten-
tional. And as time passes by, they are a great deal inclined
to imbue them with behavior that is, quite frankly, going out
of proportions with anything resembling a predictable, well-
engineered beauty of a system.

J: You mean, they want to implement more and more
functionality in order to meet ever increasing business needs
in a competitive global market?

C: Something like that. So, they want software that is
autonomous, adaptive, contextual, resilient, that deals with
new and unexpected, complex situations, that is optimized
for frequent tasks, while still capable of carrying the less

frequent ones, perhaps not so efficiently. It seems like the
stated challenge is a rehash of the historic goal of creating
truly smart machines!

J: Listen, then why don’t you go chat with AI guy and
leave me alone.

C: Are those guys still around? But you are right, that’s
the point. Many of the conceptual underpinnings of mod-
ern programming originated with AI research and symbolic
models of cognition. For instance, object-orientation was
heavily influenced by Marvin Minsky’s frame theory ([34]).
Now that the focus of research has shifted towards the con-
struction of the so called “complex systems”, maybe AI re-
searchers could give the starved for innovation software en-
gineering discipline another push. But, allow me to continue.

J: Please, go on.
C: Good. So, we all agree that software is getting way

too complex. That term is somewhat vague in an engineer-
ing context, and I believe we can narrow down a more pre-
cise meaning than the rather subjective “something compli-
cated”.

J: I’m listening.
C: First, think of a software system as an object of study

for a minute, instead of as an engineering problem to be
solved. Say, you’d like to quantify how complex that system
is. What would you do?

J: I could count the number of lines. Or, the number
of classes. I could also count the number of dependencies
between modules. I could do some code analysis and count
the number of branches in its control flow.

C: That reminds me of an interview question where the
candidate had to optimize a fairly long and complicated C
program. After thirty minutes of sweating and nail biting, he
managed to conclude that the program was invariably print-
ing the string “Hello” on its output. So, while valid those
sorts of measures do not reflect the functional complexity of
your system. For the latter is context-dependent upon the en-
vironment within which the software operates and only look-
ing at internal structure ignores the environment altogether.
A programmer ignorant of the system’s context becomes a
black box like the program they code and this just shifts the
difficulty elsewhere.

J: Agreed. And what would you propose as an alternative,
if I may ask?

C: You certainly may and I would regret to disappoint
you, but the measure that I’d propose is something that you
already know. There’s a very simple, yet informative way to
look at the complexity of something and that we’re very fa-
miliar with: we measure the length of the shortest possible
description of that something. It’s called algorithmic com-
plexity ([46], [29], [18], [19]). Now, to account for the full
functional complexity ([3], [6]) of a system, one needs to
characterize the environment (the set of possible inputs) as
well as the system’s responses to each of the different inputs.
If it takes at least C(E) bits to describe the environment and

at least C(A) bits to describe each possible response action
of a system then the functional complexity is

C(F) = C(A)2C(E)

J: How did you calculate that?
C: Well, there are 2C(E) possible inputs, right?
J: Right.
C: And for each of them, you have to specify the corre-

sponding action, right?
J: Yeah. . .
C: So you need C(A)2C(E) bits to fully specify the sys-

tem’s behavior, in terms of algorithmic complexity that is.
J: Got it.
C: Good. Now, let’s pause for a bit and see what that

formula tells us. Firstly, it quantifies a system’s complex-
ity from an observer’s point of view where both system and
environment are taken into account. Judging from your mind
set in regards to measuring complexity, you could argue that
a more truthful approach would be to examine the system’s
internals only and calculate the algorithmic complexity of
the program itself. To which I reply that a progammer has no
choice but to take the observer’s stance because the software
construction process, an utterly creative process, amounts to
a constant folding of program and environment, a continuous
rubing of code against the human world so to speak ([15]).
Incidentally, it is this process that makes programs “inten-
tional by extension”. As Brian Smith puts it ([44], p.360):

... we are expanding our registrational capacities –
building instruments and other devices that mediate
our full participation in the world

Moreover, current programming tools, namely program-
ming languages for the most part, are by their nature ul-
timately means for expressing functional descriptions. In
other words, for obvious reasons programming does not in-
volve creating a set of interacting components out of which
behavior emerges in an unpredicatable way. To the contrary,
the relationship between input and output is rather explic-
itly encoded in a program. This is yet another reason why,
from an engineering perspective, a functional approach to
the complexity of software systems is more relevant than a
structural one.

J: Relevancy granted.
C: Next, note that increasing C(A) by one bit, increases

the system’s complexity by 2C(E) bits. This means that
adding new functionality while maintaining the operational
context constant may still raise the overall complexity by
a factor depending on that operational context’s complex-
ity. Worse, changing the environment while maintaining the
same exact behavior may increase the system’s complexity
exponentially!

The point of all this, my dear Josefina, is that this is the
complexity that programmers must confront. This is the sort
of thing that Fred Brooks so eloquantly describes in [10].

Programmers cannot eliminate or reduce that complex-
ity, because it is what it is. Instead, they must match it
with copious amounts of code. And programmers, being
themselves human beings with their own limitations, for all
practical purposes quantifiable by the same equation above,
can only handle that much, some more some less, but essen-
tially the upper bound is quickly reached.

J: Your argument is very powerful. However, I must go
back to what I know, to my foundations that have been so
thoroughly explored an rehearsed over the years, that the
simple trick of divide and conquer does wonders to ap-
parently intractable problems. For instance, I can modular-
ize and encapsulate, stratify, abstract and instantiate, and so
forth.

C: Modularization isolates pieces into self-contained and
autonomous parts. When looked upon statically, in the logi-
cal space of program constructions, they make perfect sense.
The assumption is then that they can be glued together to
make a working whole. That assumption takes the whole as a
literal sum of its parts, the modules. But the running program
is rarely a completely faithful realization of the static context
within which modules are created. While at coding time we
strive for low coupling, at run-time the opposite must hap-
pen, by magic - the indepedent parts must come together
as a unified whole. The magic works most of the time, but I
contend that this is so only because our programs are still de-
ceptively simple. The problem is not that designing by divide
and conquer is absolutely wrong and should be dropped. It is
still the only way to produce meaningful components and put
systems together. For instance, human perception and cogni-
tion are in a way based on information hiding, i.e. filtering
input for relevancy. The problem is that when looking at the
system’s totality at runtime, the components become irrele-
vant and hidden interdependencies resurface with their ugly
horns. As pointed out in [17], the purpose of information
hiding plays no role in the execution of a program. Further,
the reason those dependencies crop up is very fundamental:
without them, the system wouldn’t be able to reach the vari-
ety required by its environment and defined by its function.
So they are inevitable. As all metaphors, “divide and con-
quer” goes only so far. After all, Caesar wanted each part
weaker, while engineers would like each part to be stronger
(at runtime). So modularization fails as a weapon against
complexity.

J: I strongly disagree. Modularization fails only when
the abstractions weren’t properly defined. If the design of
the program is grounded in sound, solid abstractions, all po-
tential dependencies between components would be already
accounted for. Sound abstractions come to be by following
proper modeling, good logic and description of the world as
it is. If your model is logically sound, in the sense of having
the right properties, the right relationships with the right car-
dinalities, you won’t have suprises along the way. Low cou-

pling is to be combined with high-cohesion, may I remind
you.

C: I agree that this attitude seems beneficial from a prac-
tical point of view. It gives you a sense of confidence and it
allows you to make progress. Also, I too shared the intuition
that there is a sense in which an abstraction can be quali-
fied as “right” or “wrong” and that it is not just an arbitrary
construct whose value stems purely from usefulness in such
and such context. After all, agreement in human communi-
cation could have never been reached if abstractions were so
arbitrary.

J(ironically): Thank you.
C(ignoring irony): However, I would conjecture that this

view is partially successful not so much due to the correct-
ness of those abstractions as handles to some platonic en-
tities, but because of the internal coherence constantly en-
forced by the programmer, the compiler and the runtime sys-
tem. Enforcing this sort of coherence, even only at the syn-
tactic level, is what makes software so resistant to change.
As time passes, a system becomes less and less able to ab-
sorb new perturbations (in terms of modifications), again be-
cause the law of requisite variety ([1]) demands a never end-
ing expansion of those abstractions and an ever increasing
coupling between modules.

Now, observe that the software abstractions you are talk-
ing about are the ones that get transformed into artifacts,
source code to be precise, and therefore they are in actu-
ality always reified. And as soon as they get implemented,
they take on a life of their own, and a very concrete one at
that! The reification process strips them from their potential
fluidity and malleability as models and that is why you de-
mand an impeccable logical correctness from the start. Cre-
ating an abstraction is a big commitment! Even when some
logical correctness is achieved, the exact details that are left
during the abstraction process are, to begin with, themselves
arbitrary. But this arbitrareness does not guarantuee that the
precise set of details left out is irrelevant to other parts of
the system. Just think of the number of times one wishes to
specify this extra parameter to override such and such de-
fault behavior.

J: Of course, to specify what is to be left out, one must
assume how the abstraction is to be used.

C: And since one cannot assume such a thing, one defines
usage instead. But one cannot define how the world is to
be, so abstractions ulimately fail in new contexts. Logical
faithfullness of world models has only limited applicability.

J: I see your point. Especially in object-oriented model-
ing, design follows a rather linear process of differentiation,
starting from that which is common to all and proceeding, in
one direction, to that which is distinct from all. This linear
process of reducing degrees of freedom is too rigid to make
abstractions as context-sensitive as one would hope.

C: Precisely! So, no silver bullet there either. I mean, it
all works well for systems of moderate complexity, but...

J: That is a rather gloomy perspective. You seem to be
insinuating that programmers have reached, or will soon
reach, the limits of what’s possible to achieve in software
engineering. And that the availability of more, better, faster
hardware resources becomes pointless because software has
attained its top complexity level.

C: On the contrary! It is an opportunity to do something
completely new and exciting!

J: Oh! Enlighten me then please!

3. Growth vs. Evolution
C: I think we should have some lunch first. But let me
conclude the argument. Lost in yet another evaluation of the
state of affairs in software development, you seem to have
forgotten where we started.

J: Biological evolution?
C: Right. To sum up: have I managed to convince you that

there is intractable complexity in what people want to do in
order to take software to the next level?

J: Yes.
C: And that while the traditional methods of dealing with

complexity in engineering may have localized success, on a
large scale and over time they break down miserably for very
fundamental reasons?

J: I’m sort of more in line with your thinking in this
respect now, yes.

C: Good. My conclusion from all this is, so to speak, “nat-
ural”: to attain those ever increasing levels of complexity, an
evolutionary process in software construction must be em-
braced. A process that mimics biological evolution in all its
glory. This means a changing population of individuals, with
variation and natural selection. No engineering effort was
ever capable to even get close to producing something simi-
lar to a living system. Evolution, on the other hand, has done
miracles. Call me copycat, but this is the only known process
that is capable of generating systems of versatile and com-
plex behavior such as yourself. The difficulty, of course, lies
in the realization of such a process in a practical and fruitful
way.

J: That’s precisely my concern. There is a certain para-
dox in biological evolution that seems to invalidate it as an
engineering process, namely all living organisms have one
and only one readily recognizable purpose as individuals and
that is to remain the same, to sustain their life and identity.
Yet they change. On the other hand, a system is constructed
with a desired end goal, something very different from the
initial substrate out of which it is built. And in a way soft-
ware is already being built by evolving it from something
simple into an entity with progressively richer behavior and
wider applicability. In fact, what is generally meant by “soft-
ware evolution” is this process of maintaining and growing
a system to satisfy its users.

C: Well, first of all remember that in the living world
change operates at the population level! But let’s look at or-

thodox software evolution more carefully. This process has
been extensively studied and refined. See, for example, the
FEAST project reports ([30], [31]). Software growth is char-
acterized as a multi-feedback loop involving all participants
from developers to users. But isn’t it striking how Lehman’s
first1 and sixth2 laws of software evolution are collectively
reminiscent of a living organism’s goal of survivability. The
only difference is that the context within which such evo-
lution occurs is rather limited. The result is a single prod-
uct that must meet everybody’s expectations. It is very rare
that a company manages to produce several variations of the
same product in order to satisfy competing and incompati-
ble needs. Variation is introduced later, at deployment time,
and the burden falls on the user, or on highly paid consul-
tants to tailor/customize the product through cryptic config-
uration files or a myriad of option dialogs, or macro sys-
tems. In a sense, this type of evolution balances two sorts
of pressures: the pressure to change coming from the market
and users, and the organization’s resistence to change com-
ing from engineers’ desire to keep the complexity low and
management’s desire to keep the cost low.

J: That’s debatable. I don’t think that change is seen
as evil in software development circles. On the contrary,
people love to see their programs grow and incorporate more
features.

C: True, but as long as that doesn’t mean rewriting a sub-
stantial chunk of the program. The only kind of change en-
gineers accept without restraint is addition of functionality
that does not impact the existing system. Otherwise, there
is resistence, regardless of extreme programming and the
like, programmers strive towards making things generic, im-
mutable, rock-solid, reusable, whatever. And the reasons for
that are very well-known.

Thus, the most fundamental aspect of this sort of
feedback-only driven growth of software is the lack of
variability. Uniformization is seen as an inviolable prin-
ciple, perhaps mostly because of economic considerations,
perfectly valid considerations I must confess. However, this
has several unfortunate consequences:

1. Users must pay for and then endure the “gorilla” when
all they want is the “banana”.

2. Programmers must often aggregate and account for con-
ceptually incompatible functions in order to forcefully
maintain unity.

3. Users must operate in what is the most common denom-
inator. More sophisticated users are not given the ability
to adapt the software to their way of doing things, while
less sophisticated users get lost into what seems overly
complicated for their simple task.

1 An E-type program that is used must be continually adapted else it be-
comes progressively less satisfactory.
2 Functional content of a program must be continually increased to maintain
user satisfaction over its lifetime.

In addition, and perhaps even more importantly, a rather
unfortunate consequence of all this is the pogressive divide
between the solution space and the problem space. This
is opposite to what intuition tells us and to the overall engi-
neering mandate, which is to align both spaces.

J: I’m losing you here...
C: On one hand, you have an open-ended and ever chang-

ing problem, which is to meet real world user requirements.
This requires matching ever changing user practices, busi-
ness processes and expectations, taking advantage of better
and cheaper hardware. On the other, you have the solution,
a reified abstract construction - the program - that, through
growth and increasingly unmanageable internal complexity,
reduces the set of possibilities in alternative behavior and
therefore adaptation. This divide gets deeper and deeper be-
cause the variability of the environment (i.e. users, other sys-
tems) cannot be matched by the variability in the program as
an abstract construction.

J: This is a very strong position. I must remind you that
many programs have remained untouched, yet in use for
decades!

C: Of course. Likewise in nature - organisms that have
not found compelling reasons to adapt have remained the
same for billions of years. There are further parallels. For
instance, the standard explanation of the origin of multicel-
lular organisms is that single-cell organisms cooperated to-
gether against an adverse environment. The same goes for
individual programs that get integrated/bundled with other
programs to present more attractive packages.

J: Ok, but the fundamental problem with your proposal
remains! Engineering means constructing systems with
strict, predefined function and purpose. Now, I understand
that the evolutionary process that you propose is more of the
Lamarckian kind3 so it’s not completely driven by random-
ness and natural selection.

C: That’s correct.
J: Nevertheless, the core aspect of evolution as a creative

process is the lack of a definite end-goal. And engineering
is about construction of systems with definite behavior. This
makes a top-down strategy the rule.

C: A top-down strategy demands that one be at the top, a
very presumptuous requirement when speaking about large-
scale systems. When you can’t start from the top, and when
you don’t have a clear path towards it, the best option is ex-
ploration. But let me give you a different angle then. Clas-
sical physics describes the world in terms of causes and ef-
fects. Engineering has grown out of this mechanistic world
view. There are forces and the action of a force, exerted by
something, causes such and such effect on something else.
There is no effect without a cause and vice-versa. Mechan-
ics thus enjoys a rather clean, and easily graspable logical
structure. The classical theory of computation also is en-
tirely concerned with causality. And our programming prac-

3 See, for example, http://en.wikipedia.org/wiki/Lamarck

tices are heavily dominated by that view. But think in terms
computation in the wild, as coined by Brian Smith ([44]),
instead of algorithmics. This is computation as it occurs in
the real world, all of it, computation as it participates in our
lives. It is a complex phenomenon embedded within the hu-
man cognitive web beyond the graps of a single individual.
Now, evolutionary theory is recognized to have a compara-
ble explanatory power to mechanics when it comes to com-
plex adaptive systems, the type of thing that we would want
to create in software. When trying to explain how complex
systems come about and why they do the things that they do,
one needs evolution or at least nobody has yet found a satis-
factory alternative framework. Now, you just need to make
the same shift from the descriptive, explanatory role of a
theory (classical physics) to a prescriptive endeavor (en-
gineering), but with complex systems and evolution. The
“only” difference is one of scale.

J: Let’s grab a bite. I’d like some time to digest this.

4. HOWTO Evolve Software
After lunch, Chewbacca seems sleepy and exhausted. Jose-
fina gives her an amused look this time.

J: I must confess that your argument about using biolog-
ical evolution to build software seems a fair bit convincing.
And indeed, I started wondering what you have in mind. The
crux of your argument seems to be that the process of bi-
ological evolution would provide for enough variability in
program construction.

C: Yes. Recall the essential ingredients of an evolutionary
process:

1. A growing population of individuals.

2. Means for creating variation amongst individuals.

3. Selective pressure to eliminate unfavored individuals.

When such a process is put in place for program construc-
tion, I believe a lot of the design headaches that program-
mers face would vanish. Because this process is exploratory
by nature, it has a much better chance of yielding success.

J: I’m eager to hear about the specifics of your proposal.
Is it something like GAs (genetic algorithms, [23])? Are you
proposing to build programs through some sort of gigantic
genetic algorithm?

C: Not really. But your intuition is correct. That would
be a theoretically valid approach, but it would be going to
the other extreme: from complete upfront planning to no
planning at all. I think that programs should be seen as
points in a solution space satisfying some fitness criteria.
However, in a GA the units of variation are too fine-grained,
too narrow. This makes GAs appropriate for well-defined
optimization problems where fitness can be evaluated as
some function computable in a few milliseconds. In other
words, GAs operate at a time scale much smaller than that
of human beings and can hardly be incorporated into an
engineering process, except for specific narrow domains.

And I must point that this is actually being done already in
electronic chip design precisely for the reasons of intractable
complexity that I’ve explained.

J: You are right. Building software by running some
genetic algorithm would simply be too slow. Software today
is different. It operates at a fairly high cognitive level. It must
interact with and be meaningful to humans.

C: And as I said, it is “intentional” in some sense for
it participates in our daily lives, a trend that can only in-
crease from this point on. The environment within which
software evolves, its evolutionary context if you will, IS our
daily lives. What defines success is how well a program par-
ticipates in the human cognitive web, whether it is used,
whether people are happy with how it works, how it looks,
how fast it is and so forth. A program is evaluated by people,
changed by people, reproduced by people.

J: I see. And in fact this is why we have markets and
competition between programs. This is why we have so
many open-source projects, each striving for attention. Isn’t
that then what you are talking about? Programs created by
different organizations or groups of people competing for
adoption?

C: Not really. But your intuition is correct again. I think
that programs should be evaluated for their fitness by end-
users as much as by programmers and I think that usage
is what should drive change. When you view this software
market process from a global perspective, you realize that it
is hopelessly inefficient as well, since it operates on too big
of a time scale. Furthermore, the granularity is too coarse. A
whole program can “win” over another, but specific features,
specific parts of it might be worst that the corresponding
parts of the “loser” program, and users are stuck with them.

J: And you are arguing for a middle ground?
C: Bingo! We need a middle ground. Software must be

evolved through units of information understandatable by
humans, such as abstract data types, data structures, algo-
rithmic processes/functions, inference rules, parameter sets,
help text even and what have you. In other words, everything
that’s produced to construct software but looked at more
granularly, above the bit, below the shrink wrapped product.
When a change is introduced at such a level of granularity, it
should be given a chance to live for a while, and not decided
against by a designated architect, code owner or a commit-
tee of committers. For such decisions are made in the face of
uncertainty and lack of complete knowledge, and as argued
in ([48]), they are best made by crowds rather than single
individuals.

J: I don’t understand how the dynamics of such a thing
would work. How is change validated? How and when does
it reach users for it to “live for a while”?

C: Well, dear friend, let’s flesh it out step by step. What
would a platform for evolutionary engineering look like? As
I mentioned a while ago, humans make up the environment
where computer programs evolve in the same way a natural

habitat is the environment in which living species evolve. All
humans have a participatory role in a program’s evolution.
While in a biological world, the constitutive elements of a
system are composed of physical matter, in the silicon world
the elements are drawn from the cognitive landscape of
human knowledge, interaction and information exchange. A
key point that emerges from this perspective is that all forms
of participation must be incorporated in the evolutionary
process, from the core programmer to the end-user - they
should be woven together into the same computing medium.

J: Hmm . . . users and developers sharing the same com-
puting medium. That reminds me of environments like
Smalltalk ([22]) or Self ([42]).

C: And rightfully so. An open, live-like system where a
user interacts directly with completely visible and editable
software artifacts that are persisted across sessions. So, let’s
stipulate:

Characteristic 1: Open, live programming-
interactive system.

This yields a tremendous development speed boost, the
benefits of continual testing etc. What else?

J: Speaking of a “computing medium” and the idea that
the programs’ habitat comprises all humans, aren’t you also
assuming individual systems are interconnected somehow?

C: Indeed, I am. For changes to propagate, for software
elements to diversify, specialize, be selected for or against, a
platform for evolutionary engineering must be comprised of
networked live systems. The larger the scale of this network-
ing, the better! And we have:

Characteristic 2: A decentralized network of
individual, local systems.

C: Thus, the vision would be for a distributed prototyping
environment. Because of the much finer level of granularity
and immediate visibility of change, many pairs of eyes can
contribute and validate a new piece of code or data. What
else?

J(looking suspiciously): Not sure at this point. However,
I’m wondering what kind of programming language would
people use? Smalltalk or Self or some derivative seem nat-
ural candidates for a live system. Or, something completely
new and tailored to this paradigm?

C: It’s an interesting question and a logical one at this
stage. Any thoughts?

J: As I said, why not adopt an existing language suitable
for a prototyping environment. Some dynamic language that
yields itself easily to data persistence. The Squeak Smalltalk
implementation comes to mind ([45]). But then, it seems
confined to a fervent, yet relatively isolated community. Per-
haps a more modern language with an aura of practicality,
like Perl 6, would be best. On the other hand, why not create
a language specific for this paradigm. A new paradigm calls
for a new language to express it after all!

C: I hardly see anything in a programming language
that makes it so special for an evolutionary engineering
paradigm.

J: That it must be interpreted seems like an absolute
requirement to me.

C: Insofar as some sort of late binding is available. But
I would consider that a detail. In broader terms, the most
important differences in programming languages are the so
called “programming paradigms” - imperative, functional,
logic and so forth. In any event, why do you assume that
there must be a single language in use? On one hand, ev-
ery person has a different background and talent, and on the
other every problem yields itself best to a different program-
ming paradigm. Large modern systems are a hodge podge
of components implemented in several languages mostly be-
cause each language is particularly suitable for some task or
the other. So it seems to me that choice must be given and
no one language could be argued to best fit the bill. Mutli-
ple paradigms must be able to interoperate naturally and the
environment must be of immediate practical use.

Josefina kindly raises her voice in an effort not to stiffle
Chewbacca’s ongoing enthusiasm

J: Wait, hold on! You can’t just mix languages arbitrarily
like this. Do you know how hard it is to get languages even
within the same paradigm (e.g. object-oriented) to interoper-
ate and share data? Let alone languages that are conceptually
at odds.

C: It’s certainly a difficult and very interesting problem,
but not undoable. The key to interoperability is shared data
representation and I will tell you the specifics of my thoughts
on the subject in a bit. For now, we are fleshing out require-
ments. So:

Characteristic 3: Mutli-paradigm, language
neutral programming with a shared informa-
tion representation.

J: This sounds like a grand vision! Since you’ve men-
tioned the practicality aspect, I am beginning to wonder what
could be really achieved in practice. The feeling I’m getting
as I begin to envision such a platform myself is, to put it
politely, an incorrigible mess. You are essentially leading to-
wards a process whereby a large population of participants
is encouraged to produce a potpourri of software artifacts,
small and large and surely yielding a maze of dependencies
with hidden, implicit intents.

C(simulating a smile to the best of her abilities): And
producing surprising results!

J: Well, I would say most likely unsurprisingly producing
no results at all.

C: That sort of scepticism is boringly typical of you. In-
cidentally, Andreas Wagner, comparing living and engineer-
ing systems in his comprehensive analysis of robustness and
evolvability mentions ([49], p.311) that, contrary to man-
made systems, . . . the parts of living systems behave much

more eratically and many organismal systems perform their
function in complicated, apparently inelegant and outright
byzantine ways. Both aspects are associated with the robust-
ness of living systems at every level of organization.

J: Precisely my point! This poses an important question
as to the strength of the biological metaphor for systems
engineering, namely should people be living with engineered
systems that perform their function in “apparently inelegant
and outright byzantine ways”.

C: They already are! They just can’t stop complaining
about it. Well, some don’t complain so much ([35]). But note
that this apparent messiness is modulated by proper man-
agement. To pursue the analogy a bit further, note that as
more of the mechanisms through which DNA yields a liv-
ing organism are uncovered, it is being realized that, espe-
cially for multicellular organisms, the majority of the pro-
cesses and pathways involved deal purely with management
and regulation of what we would label core functionality.
Specifically, it is mostly regulation that increases with an or-
ganism’s complexity rather than the number of functional
components ([11]). To state the obvious, coordination is an
inherent aspect of any complex system.

J: Yes, there are layers of organization in the expression
of DNA. And the so called junk DNA turned out not to be
disposable after all.

C: Right, to the contrary, it is now given primacy status
by many! The conclusion for us then is that software incur-
ring major coordination overhead shouldn’t be considered so
bad for it would be no worse than us living beings. However,
I would like to propose a different perspective to the “coor-
dination vs. core function” divide. For starters, the notion of
function and purpose in biology is a heavily debated philo-
sophical problem, for when one speaks of the function of
some part of an organism, one cuts the system through a very
subjective, preferential prism, always post factum ([32]). But
the organism itself is a whole with a set of systemic proper-
ties and the function of a given part shifts depending on the
perspective and interest of the observer. Frequently, individ-
ual parts are found to fulfill many functions at once.

J: But in an engineering endeavor function is the basis of
the artifact and precedes it. Your point please?

C: Right. The point is that as the software artifact ma-
tures and makes its way into the world, it detaches from its
original creator and intent. The detachment of the software
artifact from the single programmer’s idealistic, limited and
restrictive cognitive realm is unavoidable.

J: What sort of detachment? That it gets appropriated by
the programmer’s peers and eventually applied in a different
context? That is gets reused?

C: Kind of, yes. Note that “software reuse” is an oxy-
moron because it usually refers to artifacts being used as
is over and over. A “reusable component” actually means
“hopefully widely applicable component”. But in reality
reuse is a social phenomenon ([47], p.714), not a techni-

cal achievement and when it occurs it amounts to repurpos-
ing the artifact for something different than the original in-
tent. This requires one type of management. Another type of
management is exemplified by the need for fault tolerance,
or performance monitoring and optimization. Yet another by
the problem of resource utilization. Semantic dependencies
and inconsistencies are all-pervasive and a huge manage-
ment problem of their own. And so on and so forth. In sum,
most of the aspects that make a component/process perform
a given function are related to “external” management, an
apparent overhead outside the scope of main intent.

J: Your point please.
C: My point is that I don’t agree with my last sentence.

Management and regulation align the function of a com-
ponent or a process to its context of operation. From a
systemic perspective they are constitutive of said function
since they ensure the invariance of the systemic properties
that permit us to attribute the function in the first place. Note
that this resonates with my previous assertion that program-
mers are as much observers as enablers of the system they
produce for it is preposterous that they ignore the operational
context of their creation4.

J: If I understand correctly, you are suggesting that there
be no significant conceptual division between the functional
role of a software piece, and everything around it that con-
tributes to that role being fulfilled.

C: Indeed, this is precisely my point. Think of it as an
argument against the black box dogma. On the other hand,
it is less clear what the practical implications are. For one
thing, I seriously doubt recent proposals ([17], [41]) that
strive to “isolate and encapsulate” as black boxes the sorts
of management aspects that I just outlined.

J: Surely, then, you must have an alternative strategy in
mind. What you refer to as the black box dogma revolves
around notions such as well-defined behavior, roles, respon-
sibilities, preconditions, postconditions, input-output map-
pings, all things that make up, pretty much, all of program-
ming. What makes you so uncomfortable with that?

C: Let me give you an example . Say you have a com-
ponent X , and you want to make X robust. The black box
strategy mandates that you make a component R such that
∀x : R(x) is robust. This, I contend, is impossible be-
cause robustness has nearly as many different meanings as
there are Xs around (unless you define a robust program as
one that has 99.99% uptime, which would be trivially use-
less). The approach suffers from all the shortcomings of the
abstraction-modularization tandem we discussed before.

J: But, what else is there?
C: There is the age old trick of going meta - being able to

talk about the system, do something to the system. I stated
before that one of the main problems with abstractions in
computer programs is that they are reified. Meta turns that
into an advantage. To align the function of X to the con-

4 Except for the rare, privileged instances of closed domains.

text of operation C, one could align meta(X) to meta(C)
instead.

J: Meaning?
C: Meaning that part of the software would bring to-

gether knowledge about the system and knowledge about
its environment in order to align desired behavior and con-
text. Meaning that meta-models should be part of the sys-
tem, not external to it. Meaning that behavior should be
knowledge-driven. The approach draws its strength from the
fact that meta(X) and meta(C) are categorically the same
and therefore comparable.

J: Ah, ok. You are proposing a knowledge-driven ap-
proach as the framework for tackling the management vs.
function divide. Hmm, you know what? I just had an idea
about another approach to evolving software.

C: Great! Would you be kind enough to share it with me?
J: Sure. Since you are talking about modeling, meta-

models and relying on knowledge representation, why not
synthesize programs in silico based on those models? Then
let the programs run and only create variation between the
models and select them based on the fitness of the programs
they produce. Research on model-driven architectures, code
generation, round-trip engineering and the like would boot-
strap the process, but then the meta-models’ translation
mechanism could be evolved as well. This amounts to the
following correspondence with evolution in nature:

DNA⇐⇒ (Meta−)Models
Phenotype⇐⇒ Program
Growth&Development⇐⇒Model Translation

C: Sounds like a good idea! And in the same way the
developmental process in living organisms is itself a DNA
program, the mapping of knowledge models to programs is
encoded as knowledge. But I have something else in mind,
something closer to actual programming practice. I’m think-
ing of the concept of light semantics ([38]) proposed by De-
wayne E. Perry and used in his work on the Inscape IDE,
back in the 80s. Perry distinguishes the complexity of algo-
rithms as mathematical creations from the complexity that
“...arises from the sheer wealth, or mass, of details” where
comprehension is hindered by the problem of scale. It is this
latter type of complexity, which is the dominant one, that had
you worried about the potential messiness of my proposal
and it is this type of complexity that, according to Perry, calls
for a much lighter form of semantic approach...than full au-
tomated theorem proving but which goes beyond the current
available forms of type checking.

J: Dismissing my idea so quickly is impolite, but ok,
interesting. So by knowledge-driven, you mean making use
of some sort of ’light’ semantics to assist computation.

C: I’m not excluding ’heavy’ semantics for when the ends
justify the cost. As I alluded before, performing a function
should be seen as maintaining a systemic invariant across
environment contexts. The idea is to keep just enough in-

formation about a software element that is needed for it to
maintain function now. The information can be augmented
on a need by need basis, through the evolutionary process.
Furthermore, maintaining semantic information is needed
both by people for documentation, refactoring, reuse as well
as computers for validation, interpretation/execution, infer-
ence. Note that a rarely stated, implicit requirement in engi-
neering is human understandability and system capabilities
are sacrificed solely for that. Abstraction and modularization
often serve mainly that requirement, but there are other ways
for it to be fullfilled. And we are at one more characteristic
of our evolutionary engineering platform:

J: And I suggest that we stop there because I’m hungry
again.

C: So here it is:

Characteristic 4: A knowledge representation
framework as part of the shared information
representation.

In sum, knowledge representation and semantic informa-
tion are part of the system. Knowledge about the system is
maintained together with knowledge about its environment.
Both knowledge and processes are evolved in the same way,
through the same interface, obeying the same rules as all the
familiar programming artifacts.

J: That puts an extra dimension on the problem of getting
languages from multiple paradigms to share data.

C: I know. The schema for interoperability would call
for a full-fledged, highly-structured, yet flexible common
memory domain. And I am ready to talk about that, but let’s
postpone it for after dinner.

5. Getting Real
It is almost time to go back to bed now.

J: You are talking about a common memory domain
within which languages can interoperate. I don’t quite follow
you. On one hand, computer memory as a linear sequence
of cells is a perfectly valid common ground. On the other,
each programming language has its own way of organizing
memory that is tied to its semantics and particular imple-
mentation.

C: It’s a real challenge, I admit, to find a better lowest
denominator for organizing memory across languages and
paradigms. And I suppose there could be several equally
valuable proposals. My intuition tells me that just going
one step beyond the hardware level, acknowledging a hand-
ful of fundamental operations in memory organization that
pervade computer languages would already provide a better
foundation, and by better I mean closer to cognitive software
design processes, for interoperability between artifacts pro-
duced by different teams in different contexts.

J: The most fundamental principle of memory organiza-
tion is linking two or more things together. This provides
a basic means for aggregation. So the memory model must

at minimum offer good support for associating entities. In
addition, all important programming languages have a type
system of some sorts and rely heavily on it. Types can be
thought of as the first meta-level of semantic organization
of raw data, and a required one. Further, the model should
be general, flexible and extensible since it is to serve as a
generic knowledge representation framework allowing arbi-
trary levels of semantic organization.

C: Indeed. What I’d propose can be characterized math-
ematically as a generalized hypergraph. A hypergraph is a
graph where edges may point to more than two nodes. The
generalization further allows edges to point to other edges.
So edges and nodes are unified into the single notion of a
hypergraph atom where each atom has an arity - the num-
ber of atoms it points to - which is a number ≥ 0. Thus
atoms are interlinked in completely arbitrary ways, but link-
age is explicit. This structure was invented and proposed as
a cognitive model for artificial general intelligence by Ben
Goerztel ([21]).

J: What about types? The Types!!
C: Each atom is typed and has a value as payload. Values

and types are managed by a type system embedded within
the hypergraph structure itself. However, the connection of
an atom with the rest of hypergraph is independent of its
type and value. Thus, typing and interconnection are two
orthogonal pieces of semantic information that each atom
carries. The type system itself is completely open and able
to accomodate virtually all computer languages.

J: Hmm, tell me more about that? How can you really
unify typing mechanisms accross languages?

C: Well, obviously there’s no magic, but a good concep-
tual model will certainly help. In programming languages,
one thinks of types in terms of computational constraints im-
posed on the data (e.g. the range of values a given data vari-
able may assume). Nearly every typed language offers a type
system based on a set of primitive types and means to build
new ones out of the primitives. The complexity of a type sys-
tem generally reflects the number of ways one can construct
new types (unions, intersections, functions, records, inheri-
tance) and the elements out of which those new types can
be constructed. In polymorphic languages for instance, one
is allowed to extend the means of building new types. Types
can be parameterized over other types so that we end up with
”type constructors”, entities whose instances are concrete
types much as data values are instances of types. We then
have a set of predefined constructors: the one for records,
the one for functions and perhaps some others, sometimes
we also essentially have means to define ”custom construc-
tors”. In general, neither programming languages, nor for-
mal treatments go beyond this meta-level of type construc-
tors to, for example, type-constructor-constructors. Mathe-
matically, however there is no reason to stop at level 2, and
go to a potentially infinite tower of types (see for example
[43]).

Now, sub-typing seems to be usually always analyzed
in an ad hoc manner in formal treatments of programming
languages. First, there is a nice mathematical type formal-
ism with type checking rules and type inference. Then sub-
typing is stipulated with special rules for each separate type
constructor: for records, the sub-type relationship means
something, for functions it means something else. But the
rules are always tied to the idea of substitutability.

J: So there is no clear cut, definitive formal notion of a
type that could be easily implemented as is, without being
bound to a particular programming language or a family of
such.

C: Well, Hindley-Milner’s algorithm exemplifies such a
notion that seems fairly standard, but even that would be
too restrictive. The French logician Jean-Yves Girard very
rightly points out that types can be seen as plugging instruc-
tions. A term of a given type T is both something that can be
plugged somewhere as well as a plug with free, typed vari-
ables ([20]). This is an operational view very much in the
spirit of B. Russell’s original type theory whose motivation
was that of formal (i.e. syntactic) constructability. I think this
is as far as one can go in unifying what types really are in
computing.

J: So what do you propose?
C: That types be simply hypergraph atoms with a minimal

set of operations for managing the persistence of values
in their range and implementing a substitutability predicate
for the values that they manage. Then type constructors
are just types whose values are types and type constructor
constructors are possible at as many levels as one wishes.
Inheritance is derived from substitutibility as well.

J: I still don’t see how different languages will work with
that.

C: Each will need to bootstrap with a set of predefined
types. Then, more complex types are simply hypergraph
atoms with full information for their runtime reconstruction
available. Some of those predefined types will be what we
know as primitive types, i.e. numbers and the like. Some
will be type constructors that can create a runtime instance
of a type based on structured information in the hypergraph.
Thus, each language will have a different runtime binding
for a given type, but they all share the same storage layout
for values. Incidentally, this architecture opens the door for
pluggable type systems ([8],[2]) since several different type
schemas can be overlaid on the same graph of values.

J: That sounds like a very elaborate organization of data.
How does addressing work?

C: Each atom is referred to by a globally unique and
persistent handle. At runtime, however, speedier handles can
replace the persistent ones. Linkage in the graph relies on
handles. Values and types and raw data are all identified with
unique, persistent handles. Here is an explicit definition of
the structure in a grammar-like format:

Atom→ (Type, V alue, TargetSet)
TargetSet→ (Target1, Target2, . . . , TargetN)
Type→ Atom
V alue→ (Part1, Part2, ...)
V alue→ Raw data

J: So support for this would include searching, traversing
the graph, perhaps some pattern matching of graph struc-
tures, handling of semantic relationships between entities?

C: Yes, but think of it as a memory model. At the imple-
mentation level it is simply a very flexible, pluggable, lan-
guage and platform neutral database for storing hypergraphs.
But conceptually I see it as a replacement of the random ac-
cess memory as the foundation for program interoperation.

As I mentioned, it originates as the data structure of a
model for cognition and it is very suitable as a generic
knowledge representation framework within which manage-
ment of an artifact at all levels of granularity can be im-
plemented. In other words, this hypergraph connectivity +
types model merges the attempt to model cognition at an ab-
stract representational level with the concrete data manage-
ment needs of mundane programming!

A key aspect of hypergraph as a way of organizing data
is that a single atom in the graph can carry a huge semantic
import in virtue of its connectivity role while another atom
can simply hold a specific value suitable for a single user.

J: Can you give me some examples of atoms? Perhaps
that’ll help me get a better picture of where you are going.

C: A string is an atom. A named record is an atom. The
source code of a class is an atom as is the compiled class
itself, perhaps related by a source-of relationship. A closure
is an atom. A document is an atom. A script in a dynamic
language is another atom. A function, an inference rule, a
predicate, a predicate logic fact, the relationship between
several entities are all an atoms. The type of a function is an
atom. A UI live component is an atom. The relationship of
a UI component as the viewer of instances of a type atom is
also an atom. An instance of a class, the result of a function
as applied to a set of atoms is also an atom. A full-blown user
interface is an atom. The set of keybindings for a particular
UI component is an atom.

J: This looks like yet another “everything is an X” con-
ception, I must confess that I’m rather suspicious of those. In
fact, you started with a requirement to explicitly avoid this
trap in your characteristic 3!

C: Think of it instead as “nothing is not (conceivably) an
X” conception. Or equivalently, “everything can be an X”.
An important shift is in escaping what some have referred
to as the tyranny of objects.5 Thus while you could record
every single object or class or function as an atom in the
hypergraph, you are not required to do so. You could have
a set of those stored in a module atom, perhaps in source

5 Sadly, the author does not remember where he got that locution from. Help
in tracking down the originator will be appreciated.

code form, and have semantic dependency relationships of
other entities on this atom. I do not think that any meta-
model of programming whatsoever should be imposed, for
a meta-model is a model and models should be malleable,
replaceable and emerging during the software construction
activity. This is a fundamental flaw in proposals inspired by
similar considerations as we have here such as [24]. What an
evolutionary computing platform should provide is facilities
and encouragement for the process of evolving and sharing
software artifacts at granularity level N, where N is a natural
number.

J: Aham. Well, even though this fog of interlinked atoms
begins to clear up, I still can’t get a handle on how programs
are constructed.

C: It depends on what your handle is on programs them-
selves. If you need an executable file, then forget it. An
executable file is a packaging convenience which can be
dispensed with. Think more in terms of processes rather
than programs. Recent work from this perspective sheds
some light on the kind of execution model envisioned ([13],
[12], [37]). All those works share the desire to eliminate the
compile-time vs. runtime distinction which is a promising
venue. But the benefits of eliminating this distinction can
be achieved without abandoning familiar software practices
altogether. A good way to understand my proposal can be
found in the work of Yinliang Zhao and termed, rather ap-
propriately, granule-oriented programming: an evolvement
metaphor in which programs are “ground” into code ingre-
dients in order to localize unfitting parts of a program as ex-
plicitly as possible, and then “compound” them into granu-
lar output code ([50]). In a simple, practical setup, processes
are composed out of executable atoms (the ones whose value
is code, compiled or in some programming language). In
a more refined setup, execution can be driven by low-level
representation entirely based on the graph of atoms where
atoms would represent operators and operands for example.
In fact, a portion of the hypergraph can be viewed as a com-
binatory logic expression and executed by applying graph re-
duction techniques from functional programming. The level
at which computation is represented in the graph is left at
the programmer’s discretion. The crucial aspect is that the
composition of processes out of atoms is knowledge-driven.

J: What do you mean by composition being knowledge-
driven?

C: Putting things together in some sort of syntactic/semantic
relationship can be done in many different ways, either visu-
ally or textually by using a programming language. But ulti-
mately that’s irrelevant. What’s relevant is the representation
(in the hypergraph) of the composition as knowledge. Now,
knowledge representation is often thought of as “semantics”,
but it is purely syntactic in its raw form. Semantics comes
from the enactment of this knowledge as a computational
process. In my view, semantics ≡ computation. Thus by
knowledge-driven I mean, enacted through the interpretation

of formalized knowledge. This is a defining concept within
the logic programming paradigm and can be thought of as
generalized data-driven programming.

J: Yes, in logic programming computation is driven by
formal rules and facts expressed in some logical formalism.
So you are proposing that program construction be defined
through logical rules?

C: Again, that would amount to postulating a meta-model
and a method for computation. And we are against method,
aren’t we? Rather, there is no construction per se. There is an
encoding of knowledge about atoms, itself being represented
as atoms (remember, in the generalized hypergraph edges
can point to edges as well) and there are means to enact that
knowledge resulting in a runtime process. The interpretation
may come in the form of rules (inference rules, rewrite rules,
whatever), but also as imperative constructs or as event-
based, reactive triggers.

J: Interesting. . . when you are speaking of formal knowl-
edge about software artifacts, I’m thinking mostly in terms
of verification, validation, consistency enforcement. And
your model doesn’t seem to preclude those engineering
“goodies”. I’m reminded of the long forgotten work of De-
wayne E. Perry’s that you mentioned before dinner where
the programming environment continuously enforces con-
sistency based on declared semantic constraints on proce-
dures and data ([39], [40]).

C: Exactly. There is no a priori reason for a live, proto-
typing environment to forbid static validation of constructs.

J (smiling with complicity): The validation process being
itself created within the same paradigm, I presume.

C: But of course, my dear. Software construction and
computation are interwoven as one and the same, and so as
to not lose all we’ve learned in more than half a century of
software engineering practice.

J: You know, Graham Nelson has created the wonderful
IF6 Inform 7 environment ([36]). There, fictional stories are
created as computer programs. All this conversation makes
me think that programs should be seen as fiction stories as
well. So what he says about Inform 7 becomes of general
relevancy:

. . . I suggest that the activity of programming IF is a
form of dialogue between programmer and computer
to reach a state with which both are content, and
that it is not unlike the activity of playing IF, also
a continuing dialogue in which the computer rejects
much of what the user tries.

C(smiling with content): I guess that summarizes it beau-
tifully.

J: Well, to be honest I’m getting quite tired already.
Perhaps we could continue tomorrow, but before that I’d like
to hear how you envision two non-trivial aspects of your
evolutionary computing schema - variation and selection.

6 Interactive Fiction.

I’m guessing that the population of individuals are those
hypergraph atoms.

C: That’s correct.
J: Then each user is working with their own instance of

the hypergraph. And each instance is connected to other in-
stances so that atoms can be shared, replicated or distributed
in a peer-to-peer fashion.

C: Yes, your understanding is right. Clusters of hyper-
graphs may exist within a single organization, or span ge-
ographic locations and serve as a collaborative medium for
teams and programmers. A user may be connected to such a
cluster solely for consumption purposes without ever partic-
ipating in code.

J: I see. Now, I’m guessing variation in the population of
atoms is created by programmers.

C: Yes, or by more sophisticated users! The simple act of
configuring a certain aspect of the system in some context is
a valuable contribution to the whole.

J: Sure. Now, tell me what varies. More specifically, how
does an atom vary?

C: Recall that an atom is essentially a triple of (type,
value, target set). All three constitutive elements are allowed
to change while the atom preserves its identity (because it
is identified by the same handle) so that links pointing to
it remain valid. Thus an atom can simply have its value
replaced with something else (note, however, that values
themselves are immutable) and/or it’s type be replaced by
a more appropriate one. Or, it can be redirected to link a
different set of target atoms. Each such variation normally
changes some aspect of the behavior of the system.

J: So consistency would be enforced through the sub-
sumes predicate that you mentioned before?

C: Right. But note that when an atom is not modified
in isolation, dependencies can be easily tracked since they
would normally be explicit in the graph structure. In such
cases, variation would be at the sub-graph level. When atom
types change, approaches such as [14] could assist.

J: I see. But there are risks in such a setup, for when a
dependency is not directly represented in the graph, infore-
seeable inconsistencies will occur.

C: Indeed they will. In that case the change will break and
it will have to be reverted back or fixed in situ.

J: Hmm, fair enough. In that case, it must be possible to
backtrack to older versions. I assume change history must be
kept. Then how are atom versions identified?

C: They are not. There is a distinction between modifying
an atom and updating it from another hypergraph location.
Modifications are not considered special. Updates on the
other hand are, and bear a unique identifier. When an atom is
updated, its current triple is recorded as a different atom (i.e.
under a different handle). The new an old version are linked
and tagged with the update. When a whole sub-graph is
updated, all atoms are tagged with the same update identifier.

An update can thus be rolled back regardless of how many
atoms it is comprised of.

J: Sounds like a sensible approach. Now, I’m guessing
that selection happens when a certain variation of an atom
gets replicated widely in the network of hypergraphs.

C: Yes, and it doesn’t have to be replicated everywhere.
Different versions can exist in parallel and evolve separately
at different locations.

J: That’s understood. However, I’m curious as to what
exactly triggers an update from one location to another? Is it
random? Is it explicitly requested by the user?

C: That’s the tricky part! I’m guessing that different ne-
gotiation protocols could be implemented. For instance, a
team closely working together towards a single definite goal
would like synchronization to be almost automatic with the
relevant part of the hypergraph identically replicated ev-
erywhere. On the other hand, if a user is connected to a
large peer-to-peer network composed of many strangers they
would want strict isolation and manual triggering of up-
dates. Policies for proposing updates based on previous his-
tory, or some measure of similarity between two parties can
be implemented. It’s an interesting problem. And perhaps
it should be solved through evolution within the same plat-
form! All hackers are welcome!

Josefina yawns and her glassy, red eyes give her the
slightly dreamy look so typical of her. Meanwhile, Chew-
bacca keeps staring at her in expectation of an eventual re-
action. Josefina heads for her ”lair” slowly, but stops and
looks back halfway one last time before turning in.

J: Dear friend, this is all very promising, I will sleep on it
for many nights to come and I hope that we can continue the
discussion. One last question, if I may?

C: Shoot!
J: How would this type of open environment work as a

market for software?
C: Hmm, don’t know. You tell me.

6. Epilog
The main point in the discussion above is that to take soft-
ware to the next level of complexity, what is mostly needed
is not a new and better set of abstractions, not a library that
models some seemingly relevant aspects of living systems,
but the re-enactment of the process by which living systems
come to be. This doesn’t require abandoning “software as we
know it”. There is nothing wrong with it. It doesn’t require a
software revolution, but the evolution of software.

An implementation of the architecture outlined in the
above dialog is currently under development on the Java
platform. We have made great emphasis on the practical as-
pect of the environment and its usability for day to day work.
The hypergraph memory model implementation is at a very
advanced stage, in the form of a free, open-source prod-
uct called HyperGraphDB ([27]). In addition to serving as
a persistent layer of live objects and knowledge represen-

tation for the evolutionary computing platform endeavour,
it is heavily being used in semantic web projects. Hyper-
GraphDB is accessible through a Java implementation, but
the storage layout is independent of Java and a C++ access
layer is planned. At the time of this writing, HyperGraphDB
is not yet distributed. A programming environment called
Scriba ([28]) holds sway of the interactive computing live
system. At the current stage, Scriba is a scripting environ-
ment integrating languages implemented on the Java plat-
form. The integration is loosely based on the JSR 223 spec-
ification, to which some extensions are being experimented
with. Three paradigmatic languages have been incorporated:
BeanShell[7], JScheme[26] and JLog[25]. Parts of the cur-
rent user interface are “hard-coded” as a Java application,
a bootstrapping step towards an environment implemented
entirely within the proposed platform. It is inspired from the
Mathematica system ([33]) where the REPL is replaced with
nested cell structures, each cell holding anything from an
expression to a live Java component; it is also free, open-
sourced and currently in use for prototyping and testing Java
and J2EE application.

Acknowledgments
Thanks to Assia Alexandrova, Yaneer Bar-Yam, Ben Go-
ertzel and Juliette Colinas for their numerous constructive
comments on earlier drafts of this paper.

References
[1] Ashby, Ross W., ”An Introduction to Cybernetics”, Chapman

& Hall, London, 1956

[2] Andreae, Chris, Noble, James, Markstrum, Shane, Millstein,
Todd, ”A Framework for Implementing Pluggable Type Sys-
tems”, Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, Portlan,
Oregon, 2006

[3] Bar-Yam,Y., ”Dynamics of Complex Systems”, pp. 752-757,
Perseus, Reading, MA, 1997

[4] Bar-Yam, Y., ”Large Scale Engineering and Evolutionary
Change: Useful Concepts for Implementation of FORCEnet”,
Report to Chief of Naval Operations Strategic Studies Group,
2002, available at
http://necsi.org/projects/yaneer/SSG NECSI 2 E3 2.pdf

[5] Bar-Yam, Y., ”When Systems Engineering Fails — Toward
Complex Systems Engineering”, International Conference on
Systems, Man & Cybernetics Vol. 2, 2021-2028, IEEE Press,
Piscataway, NJ, 2003.

[6] Bar-Yam, Y., ”Unifying Principles in Complex Systems,
in Converging Technology (NBIC) for Improving Human
Performance”, M. C. Roco and W.S. Bainbridge eds, Kluwer,
2003.

[7] http://www.beanshell.org

[8] Bracha, Gilad, ”Pluggable Type Systems”, Proceedings of the
ACM Conference on Object-Oriented Programming, Systems,

Languages and Applications, Vancouver, British Columbia,
Canada, 2004

[9] Braha, Dan, Minai, Ali, Bar-Yam, Yaneer (Eds.) ”Complex
Engineered Systems: Science Meets Technology”, Springer,
2006

[10] Brooks, Frederick, ”No Silver Bullet: Essence and Accidents
of Software Engineering”, Information Processing, 1986

[11] Colinas, J., ”Non-coding DNA sequences and gene regula-
tion”, Ph.D. thesis, Duke University, 2006

[12] Edwards, Jonathan, ”Subtext: Uncovering the Simplicity of
Programming”, Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications,
San Diego, California, USA, 2005

[13] Elliott, Conal, ”Functional Programming by Interacting
with Tangible Values”, draft paper under revision, available
at http://conal.net/papers/Eros

[14] Evans, Huw, Dickman, Peter, ”Zones, Contracts and Absorb-
ing Change: An Approach to Software Evolution”, Proceedings
of the ACM Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications, Denver, Colorado, USA,
1999

[15] Evens, Aden, ”Object-Oriented Ontology, or Programming’s
Creative Fold”, Angelaki, Volume II, number I, April 2006

[16] The FEAST (Feedback, Evolution And Software Technology)
projects, http://www.doc.ic.ac.uk/ mml/feast/

[17] Gabriel, Richard P., Goldman, Ron, ”Conscientious Soft-
ware”, Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, Portlan,
Oregon, 2006

[18] Chaitin, G.J., ”Algorithmic Information Theory”, Cambridge
University Press, 1987.

[19] Chaitin, G.J., ”Information, Randomness & Incompleteness,
2nd edition”, World Scientific, 1990

[20] Girard, Jean-Yves, Lafont, Yves, Taylor, Paul, ”Proofs and
Types”, Cambridge University Press, 1989

[21] Goertzel, Ben, ”Patterns, Hypergraphs & Embodied General
Intelligence”, IEEE World Congress on Computational Intelli-
gence, Vancouver, BC, Canada, 2006

[22] Goldberg, A., Robinson, D., ”Smalltalk-80: The Language
and Its Implementation”, Addison-Wesley, 1993

[23] Holland, John H., ”The Hidden Order”, Addison Wesley
Publishing Company, 1996

[24] Imbusch, Oliver, Langhammer, Frank, von Walter, Guido,
”Ercatons and Organic Programming: Say Good-Bye to Planned
Economy”, Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications,
San Diego, California, USA, 2005

[25] http://jlogic.sourceforge.net/

[26] http://jscheme.sourceforge.net/jscheme/main.html

[27] http://www.kobrix.com/hgdb.jsp

[28] http://www.kobrix.com/scriba.jsp

[29] Kolmogorov, A.N., ”Selected Works, Volume III: Information

Theory and the Theory of Algorithms (Mathematics and Its
Applications)”, A.N. Shiryayev, ed., Kluwer, Dordrecht, 1987

[30] Lehman, M M, ”Laws of Software Evolution Revisited”,
Software Process Technology - Proceedings of the 5 th European
Workshop, pages 108–124, Nancy, France, October 1996.
Springer-Verlag. Lecture Notes in Computer Science 1149.

[31] Lehman, M M, Ramil, J F, ”Evolution in Software and Related
Areas”, ACM Proceedings of the 4th International Workshop on
Principles of Software Evolution, Vienna, Austria, 2001

[32] Lewens, Tim, ”Organisms and Artifacts”, The MIT Press,
2004

[33] http://www.wolfram.com/products/mathematica/index.html

[34] Minsky, Marvin, ”A Framework for Representing Knowl-
edge”, MIT, AI Memo 306, 1974, available at
http://hdl.handle.net/1721.1/6089

[35] Noble, James, Biddle, Robert, ”Notes on Postmodern Pro-
gramming”, OOPSLA 2002, Onward! track

[36] Nelson, Graham, ”Natural Language, Semantic Analysis
and Interactive Fiction”, Inform 7 white paper, available at
http://www.inform-fiction.org/I7Downloads/Documents/
WhitePaper.pdf

[37] Perera, Roly, Foster, Jeff, György, Koch, ”A Delta-Driven
Execution Model for Semantic Computing”, Proceedings of the
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, San Diego, California, USA, 2005

[38] Perry, Dewayne E., ”Software Evolution and ’Light’ Se-
mantics”, Proceedings of the ACM Internation Conference on
Software Engineering, Los Angeles, California, USA, 1999

[39] Perry, Dewayne E., ”The Logic of Propagation in the Inscape
Environment”, Proceedings of SIGSOFT ’89: Testing, Analysis
and Verification Symposium, Key West, FL, December 1989

[40] Perry, Dewayne E., ”Version Control in the Inscape Envi-
ronment”, Proceedings of the 9th International Conference on
Software Engineering, (IEEE Computer Society Press), p142-
p149, 1987

[41] Rinard, Martin, ”Acceptibility-Oriented Computing”, Pro-
ceedings of the ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications, Anaheim,
California, USA, 2003

[42] Ungar, David, Smith, Randall, ”Self: The Power of Simplic-
ity”, Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, Orlando,
Florida, USA, 1987

[43] Sheard, Tim, ”Languages of the Future”, Proceedings of the
ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications, Vancouver, British Columbia,
Canada, 2004

[44] Smith, Brian Cantwell, ”On the Origin of Objects”, The MIT
Press, 1996

[45] Squeak Smalltalk environment, available at
http://www.squeak.org

[46] Solomonoff, R. J.,Information and Control,7,1,(1964)

[47] Stroustrup, Bjarne, ”The C++ Programming Language”, 3nd

edition, Addison-Wesley, 1997

[48] Surowiecki, James, ”The Wisdom of Crowds”, Anchor Books,
2005

[49] Wagner, Andreas, ”Robustness and Evolvability in Living
Systems”, Princeton University Press, 2005

[50] Zhao, Yinliang, ”Granule-Oriented Programming”, Proceed-
ings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, Vancouver, British
Columbia, Canada, 2004

